

ResinAway 3764/1 Monocure Pty Ltd

Chemwatch Hazard Alert Code: 2

Issue Date: **07/03/2020** Print Date: **17/05/2021** L.GHS.AUS.EN

Chemwatch: 5388-21 Version No: 4.1.5.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	ResinAway 3764/1	
Chemical Name	Not Applicable	
Synonyms	Not Available	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses 3D SLA/DLP model post print cleaning solution.

Details of the supplier of the safety data sheet

Registered company name	Monocure Pty Ltd		
Registered company name	WONDCLIFE FLY LLU		
Address	nit 16 / 364 Park Rd Regents Park NSW 2143 Australia		
Telephone	2 9738 5340		
Fax	Not Available		
Website	www.monocure3d.com.au		
Email	support@monocure3d.com.au		

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE	
Emergency telephone numbers	+61 2 9186 1132	
Other emergency telephone numbers	+61 1800 951 288	

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

COMBUSTIBLE LIQUID, regulated for storage purposes only

COMBOSTIBLE LIQUID, regulated to	in storage purposes only
Poisons Schedule	Not Applicable
Classification [1]	Flammable Liquid Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - single exposure Category 3 (narcotic effects), Chronic Aquatic Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word Warning

Hazard statement(s)

H227 Combustible liquid.

Page 2 of 15

ResinAway 3764/1

Issue Date: **07/03/2020**Print Date: **17/05/2021**

H315	Causes skin irritation.
H319	Causes serious eye irritation.
H335	May cause respiratory irritation.
H336	May cause drowsiness or dizziness.
H412	Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P271	Use only outdoors or in a well-ventilated area.	
P261	oid breathing mist/vapours/spray.	
P273	Avoid release to the environment.	
P280	P280 Wear protective gloves/protective clothing/eye protection/face protection/hearing protection.	

Precautionary statement(s) Response

• , ,				
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.			
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P312	all a POISON CENTER/doctor/physician/first aider/if you feel unwell.			
P337+P313	eye irritation persists: Get medical advice/attention.			
P302+P352	IF ON SKIN: Wash with plenty of water.			
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.			
P332+P313	If skin irritation occurs: Get medical advice/attention.			
P362+P364	Take off contaminated clothing and wash it before reuse.			

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name		
34590-94-8	>60	dipropylene glycol monomethyl ether		
57-55-6	<10	propylene glycol		
111109-77-4	<3	dipropylene glycol dimethyl ether		
68439-51-0	<3	alcohols C12-14 ethoxylated propoxylated		
Not Available	balance	Ingredients determined not to be hazardous		
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available			

SECTION 4 First aid measures

Description of first aid measures

Description of first aid measur	es
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully.

Issue Date: **07/03/2020**Print Date: **17/05/2021**

- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

Version No: 4.1.5.1

To treat poisoning by the higher aliphatic alcohols (up to C7):

- Gastric lavage with copious amounts of water.
- It may be beneficial to instill 60 ml of mineral oil into the stomach
- Oxygen and artificial respiration as needed.
- Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens.
- To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose.
- ▶ Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5)

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for shock.
- Monitor and treat, where necessary, for pulmonary oedema.
- Anticipate and treat, where necessary, for seizures
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- ▶ Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Acidosis may respond to hyperventilation and bicarbonate therapy.
- Haemodialysis might be considered in patients with severe intoxication.
- Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For C8 alcohols and above.

Symptomatic and supportive therapy is advised in managing patients.

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- ► Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
 Wear full body protective clothing with breathing apparatus.
 - Prevent, by any means available, spillage from entering drains or water course.
 - ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
- Fire Fighting

 Avoid spraying water onto liquid pools
 - ▶ DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.

Combustible.

- ▶ Slight fire hazard when exposed to heat or flame.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- Fire/Explosion Hazard May emit acrid smoke
 - Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2)

nitrogen oxides (NOx)

Page 4 of 15

ResinAway 3764/1

Issue Date: **07/03/2020** Print Date: **17/05/2021**

other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

HAZCHEM Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Remove all ignition sources. Clean up all spills immediately Avoid breathing vapours and contact with skin and eyes. **Minor Spills** ▶ Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite Place in a suitable, labelled container for waste disposal. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. **Major Spills** Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling DO NOT allow clothing wet with material to stay in contact with skin The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe DO NOT concentrate by evaporation, or evaporate extracts to dryness, as residues may contain explosive peroxides with DETONATION potential Any static discharge is also a source of hazard. ▶ Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through a column of activated alumina. Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage. Add inhibitor to any distillate as required. When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely. Avoid all personal contact, including inhalation. Safe handling Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. ► When handling, **DO NOT** eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. • Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources.

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

- Metal can or drum
- Packaging as recommended by manufacturer.

Store in a cool, dry, well-ventilated area.

Check all containers are clearly labelled and free from leaks.

Store away from incompatible materials and foodstuff containers.
 Protect containers against physical damage and check regularly for leaks.

Observe manufacturer's storage and handling recommendations contained within this SDS.

Page 5 of 15 Issue Date: 07/03/2020
Print Date: 17/05/2021

Storage incompatibility

▶ Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates.

SECTION 8 Exposure controls / personal protection

Control parameters

Version No: 4.1.5.1

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	dipropylene glycol monomethyl ether	(2-Methoxymethylethoxy) propanol	50 ppm / 308 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	propylene glycol	Propane-1,2-diol total: (vapour & particulates)	150 ppm / 474 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	propylene glycol	Propane-1,2-diol: particulates only	10 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
dipropylene glycol monomethyl ether	150 ppm	1700* ppm	9900** ppm
propylene glycol	30 mg/m3	330 mg/m3	2,000 mg/m3
propylene glycol	30 mg/m3	1,300 mg/m3	7,900 mg/m3

Ingredient	Original IDLH	Revised IDLH
dipropylene glycol monomethyl ether	600 ppm	Not Available
propylene glycol	Not Available	Not Available
dipropylene glycol dimethyl ether	Not Available	Not Available
alcohols C12-14 ethoxylated propoxylated	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
dipropylene glycol dimethyl ether	E	≤ 0.1 ppm
alcohols C12-14 ethoxylated propoxylated	Е	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health	

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

rype of Contaminant.	All Speed.
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Air Speed

Page **6** of **15**

Issue Date: **07/03/2020**Print Date: **17/05/2021**

ResinAway 3764/1

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

► Safety glasses with side shields

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Hands/feet protection

· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

· Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

· Contaminated gloves should be replaced.

As defined in ASTM $\bar{\text{F-739-96}}$ in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron.Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

ResinAway 3764/1

Material	СРІ
BUTYL	С

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum	Half-Face	Full-Face	Powered Air
Protection Factor	Respirator	Respirator	Respirator

Page **7** of **15** Issue Date: 07/03/2020 Print Date: 17/05/2021

I	(
BUTYL/NEOPRENE	С
HYPALON	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
VITON	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

C: Poor to Dangerous Choice for other than short term immersion

NOTE : As a series of factors will influence the actual performance of the glove, a finalselection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

up to 5 x ES	AK-AUS / Class 1 P2	-	AK-PAPR-AUS / Class 1 P2
up to 25 x ES	Air-line*	AK-2 P2	AK-PAPR-2 P2
up to 50 x ES	-	AK-3 P2	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or $hydrogen\ cyanide(HCN),\ B3=Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ E=Sulfur$ dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Clear liquid with no odour; mixes with water.		
			l
Physical state	Liquid	Relative density (Water = 1)	0.97
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	207
pH (as supplied)	7.1	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	*75 (dipropylene glycol monomethyl ether)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Combustible.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular

B: Satisfactory; may degrade after 4 hours continuous immersion

ResinAway 3764/1

Issue Date: 07/03/2020 Print Date: 17/05/2021

system

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace. because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well.

Inhalation hazard is increased at higher temperatures.

In fog-laden atmospheres rats exposed to dipropylene glycol monomethyl ether DPME, for 7 hours, exhibited a mild narcosis from which they rapidly recovered. Controlled human exposures to vapour produced CNS impairment at 1000 ppm in one subject Acute effects from inhalation of high vapour concentrations may be chest and nasal irritation with coughing, sneezing, headache and even nausea

Ingestion

Accidental ingestion of the material may be damaging to the health of the individual.

The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either

produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin Contact

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Limited evidence suggests that repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals. Repeated or prolonged eye contact may cause inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or

Studies with some glycol ethers (principally the monoethylene glycols) and their esters indicate reproductive changes, testicular atrophy, infertility and kidney function changes. The metabolic acetic acid derivatives of glycol ethers (alkoxyacetic acids), not the ether itself, have been found to be the proximal reproductive toxin in animals. The potency of these metabolites decreases significantly as the chain length of the ether increases. Consequently glycol ethers with longer substituents (e.g diethylene glycols, triethylene glycols) have not generally been associated with reproductive effects. One of the most sensitive indicators of toxic effects observed from many of the glycol ethers is an increase in the erythrocytic osmotic fragility in rats Which produces haemolytic anaemia). This appears to be related to the development of haemoglobinuria (blood in the urine) at higher exposure levels or as a result of chronic exposure.

Glycol ethers based on propylene oxides, propylene glycol ethers, dipropylene glycol ethers and tripropylene glycol ethers are mainly available, commercially, as alpha-isomers (because of thermodynamic considerations); these are incapable of forming alkoxyacetic or alkoxypropionic acids as metabolites and therefore do not produce erythrocyte fragility unless contaminated by ethylene glycol ethers or to a significant degree by the beta-isomer . beta-Isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects)

Chronic

Rats, rabbits, guinea pigs and monkeys exposed to DPME, 7 hr/day, 5 days a week for periods of 6-8 months to saturated atmospheres (300 ppm), exhibited little effect. Narcotic effects were produced in rats. This concentration of vapour is objectionable to human beings Propylene glycol is though, by some, to be a sensitising principal following the regular use of topical creams by eczema patients. A study of 866 persons using a formulation containing propylene glycol in a patch test indicated that propylene glycol caused primary irritation in 16% of exposed individuals probably caused by dehydration. Undiluted propylene glycol was tested on 1556 persons in a 24 hour patch test. 12.5% showed reactions which were largely toxic (70%) or allergic in nature (30%). Reaction responses reached their maximum on the second day or later. Reactions were seasonal in nature ranging from 17.8% in winter to 9.2% in other seasons. In a patch-test using 25 standard allergens conducted on 500 individuals, propylene glycol ranked fourth in sensitising response. 84 subjects were patch tested using 100% propylene glycol. as well as 2% and 5% in water. With undiluted material, 15% demonstrated a reaction, with 40% of the reactions being allergic in nature and 60% being irritant. In dilute solutions 5 of 248 subjects exhibited a reaction.

Undiluted propylene glycol tested on the skin of man produced no irritation under open conditions but when applied under occlusive conditions, for 2 weeks, it produced severe erythema, oedema and vesicles, probably due to sweat retention and weak primary irritation. Predictive contact skin sensitisation tests indicate that propylene glycol is an intermediate grade sensitiser with an index of 1% of tested subjects. Groups of cats fed 5 gm/kg/day of propylene glycol for 14 weeks showed a significant dose-related increase in red blood cell Heinz body formation without any marked signs of haemolytic anaemia. The no-effect-level for cats without formation of Heinz bodies is 100-500 ml/kg. There is no evidence of anaemia or degenerative change. Groups of rats dosed orally with 0.5 or 10 mg/kg/day for 12 weeks had lowered food intake

	TOXICITY	IRRITATION
ResinAway 3764/1	Not Available	Not Available
	TOXICITY	IRRITATION
dipropylene glycol monomethyl ether	Dermal (rabbit) LD50: 9500 mg/kg ^[2]	Eye (human): 8 mg - mild
	Oral(Rat) LD50; >5000 mg/kg ^[1]	Eye (rabbit): 500 mg/24hr - mild
		Skin (rabbit): 238 mg - mild
		Skin (rabbit): 500 mg (open)-mild
	TOXICITY	IRRITATION
propylene glycol	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 100 mg - mild

but no adverse effects on body weights. Erythrocytes were more fragile. Heinz bodies were not apparent.

Page 9 of 15 Issue Date: 07/03/2020 Print Date: 17/05/2021

	Inhalation(Rat) LC50; >44.9 mg/L4h ^[2]	Eye (rabbit): 500 mg/24h - mild
	Oral(Rat) LD50; >10400 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
		Skin(human):104 mg/3d Intermit Mod
		Skin(human):500 mg/7days mild
		Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
lipropylene glycol dimethyl ether	dermal (rat) LD50: >2000 mg/kg ^[2]	Not Available
etilei	Oral(Rat) LD50; 3300 mg/kg ^[2]	
	TOXICITY	IRRITATION
alcohols C12-14 ethoxylated propoxylated	Dermal (rabbit) LD50: 2290 mg/kg ^[2]	Not Available
	Oral(Rat) LD50; 3530 mg/kg ^[2]	
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

DIPROPYLENE GLYCOL MONOMETHYL ETHER

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production

The acute oral toxicity of propylene glycol is very low, and large quantities are required to cause perceptible health damage in humans. Serious toxicity generally occurs only at plasma concentrations over 1 g/L, which requires extremely high intake over a relatively short period of time. It would be nearly impossible to reach toxic levels by consuming foods or supplements, which contain at most 1 g/kg of PG. Cases of propylene glycol poisoning are usually related to either inappropriate intravenous administration or accidental ingestion of large quantities by children. The potential for long-term oral toxicity is also low. Because of its low chronic oral toxicity, propylene glycol was classified by the U. S. Food and Drug Administration as "generally recognized as safe" (GRAS) for use as a direct food additive.

Prolonged contact with propylene glycol is essentially non-irritating to the skin. Undiluted propylene glycol is minimally irritating to the eye, and can produce slight transient conjunctivitis (the eye recovers after the exposure is removed). Exposure to mists may cause eye irritation, as well as upper respiratory tract irritation. Inhalation of the propylene glycol vapours appears to present no significant hazard in ordinary applications. However, limited human experience indicates that inhalation of propylene glycol mists could be irritating to some individuals It is therefore recommended that propylene glycol not be used in applications where inhalation exposure or human eye contact with the spray mists of these materials is likely, such as fogs for theatrical productions or antifreeze solutions for emergency eye wash stations.

Propylene glycol is metabolised in the human body into pyruvic acid (a normal part of the glucose-metabolism process, readily converted to energy), acetic acid (handled by ethanol-metabolism), lactic acid (a normal acid generally abundant during digestion), and propionaldehyde (a potentially hazardous substance).

Propylene glycol shows no evidence of being a carcinogen or of being genotoxic.

Research has suggested that individuals who cannot tolerate propylene glycol probably experience a special form of irritation, but that they only rarely develop allergic contact dermatitis. Other investigators believe that the incidence of allergic contact dermatitis to propylene glycol may be greater than 2% in patients with eczema.

One study strongly suggests a connection between airborne concentrations of propylene glycol in houses and development of asthma and allergic reactions, such as rhinitis or hives in children

PROPYLENE GLYCOL

Another study suggested that the concentrations of PGEs (counted as the sum of propylene glycol and glycol ethers) in indoor air, particularly bedroom air, is linked to increased risk of developing numerous respiratory and immune disorders in children, including asthma, hay fever, eczema, and allergies, with increased risk ranging from 50% to 180%. This concentration has been linked to use of water-based paints and water-based system cleansers.

Patients with vulvodynia and interstitial cystitis may be especially sensitive to propylene glycol. Women suffering with yeast infections may also notice that some over the counter creams can cause intense burning. Post menopausal women who require the use of an eostrogen cream may notice that brand name creams made with propylene glycol often create extreme, uncomfortable burning along the vulva and perianal area. Additionally, some electronic cigarette users who inhale propylene glycol vapor may experience dryness of the throat or shortness of breath . As an alternative, some suppliers will put Vegetable Glycerin in the "e-liquid" for those who are allergic (or have bad reactions) to propylene glycol. Adverse responses to intravenous administration of drugs which use PG as an excipient have been seen in a number of people, particularly with large dosages thereof. Responses may include "hypotension, bradycardia... QRS and T abnormalities on the ECG, arrhythmia, cardiac arrest, serum hyperosmolality, lactic acidosis, and haemolysis". A high percentage (12% to 42%) of directly-injected propylene glycol is eliminated/secreted in urine unaltered depending on dosage, with the remainder appearing in its glucuronide-form. The speed of renal filtration decreases as dosage increases, which may be due to propylene glycol's mild anesthetic / CNS-depressant -properties as an alcohol. In one case, intravenous administration of propylene glycol-suspended nitroglycerin to an elderly man may have induced coma and acidosis. Propylene glycol is an approved food additive for dog food under the category of animal feed and is generally recognized as safe for dogs with an LD50 of 9 mL/kg. The LD50 is higher for most laboratory animals (20 mL/kg)

Similarly, propylene glycol is an approved food additive for human food as well. The exception is that it is prohibited for use in food for cats due to links to Heinz body anemia.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

DIPROPYLENE GLYCOL DIMETHYL ETHER

In vitro mutagenicity studies were negative; animal mutagencity studies were negative * Dow MSDS

ALCOHOLS C12-14 ETHOXYI ATED **PROPOXYLATED**

No significant acute toxicological data identified in literature search.

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3.6.9.12.15-

Page 10 of 15 ResinAway 3764/1

Issue Date: 07/03/2020 Print Date: 17/05/2021

pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult

their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers.

Ann-Therese Karlberg et al: Chem. Res. Toxicol.2008.21.53-69

Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners.

PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations. Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology http://doi.org/10.5487/TR.2015.31.2.105

Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity.

Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult diagnose ACD to these compounds by patch testing.

Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units:

EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes)

EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

EO > 15-20 gives Harmful (Xn) with R22-41

>20 EO is not classified (CESIO 2000)

Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xii) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xii) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xii) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xii) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xii) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xii) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xii) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xii) with R36/38 (Irritating to eyes and skin) and C13 EO15, are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irritating to eyes and skin) are Irritating (Xii) with R36/38 (Irr

AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intraspecies extrapolations.

AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use.

For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers):

Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME

Page 11 of 15 ResinAway 3764/1

Issue Date: 07/03/2020 Print Date: 17/05/2021

are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr. Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that

of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight.

Metabolism: The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected *in vivo*. The principal metabolite of TGME is believed to be 2-[2-(2-methoxyethoxy) acetic acid. Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers.

The metabolites of category members are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur

Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death.

Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation.

Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity

In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation. Due to a high incidence of similar spontaneous changes

in normal New Zealand White rabbits, the testicular effects were considered not to be related to treatment. Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered unremarkable.

A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day. In this study, significantly-increased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or

haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats

In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically-significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic toxicity

Mutagenicity: Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity.

Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day).

Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1,000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain.

* [Henkel CCINFO 1450373]

for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to non-irritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating None are skin sensitisers.

DIPROPYLENE GLYCOL MONOMETHYL ETHER & DIPROPYLENE GLYCOL DIMETHYL ETHER

Issue Date: **07/03/2020**Print Date: **17/05/2021**

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested).

Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members.

One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health.

In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity. The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPMA and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	×	Carcinogenicity	X
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend

Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
ResinAway 3764/1	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	96h	Algae or other aquatic plants	>969mg/l	2
dipropylene glycol	EC50	72h	Algae or other aquatic plants	>969mg/l	2
monomethyl ether	EC50	48h	Crustacea	1930mg/l	2
	LC50	96h	Fish	>1000mg/l	2
	NOEC(ECx)	528h	Crustacea	>=0.5mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	48h	Crustacea	>0.342mg/L	4
	LC50	96h	Fish	>10000mg/l	2
propylene glycol	EC50	96h	Algae or other aquatic plants	19000mg/l	2
	NOEC(ECx)	336h	Algae or other aquatic plants	<5300mg/l	1
	EC50	72h	Algae or other aquatic plants	19300mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
dipropylene glycol dimethyl	NOEC(ECx)	504h	Crustacea	10mg/l	2
ether	EC50	72h	Algae or other aquatic plants	1746mg/l	2
	LC50	96h	Fish	106-111mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
alcohols C12-14 ethoxylated propoxylated	Not Available	Not Available	Not Available	Not Available	Not Available

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment

Issue Date: **07/03/2020**Print Date: **17/05/2021**

Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways.

Persistence	and	degradability
-------------	-----	---------------

Ingredient	Persistence: Water/Soil	Persistence: Air
dipropylene glycol monomethyl ether	нівн	HIGH
propylene glycol	LOW	LOW
dipropylene glycol dimethyl ether	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
dipropylene glycol monomethyl ether	LOW (BCF = 100)
propylene glycol	LOW (BCF = 1)
dipropylene glycol dimethyl ether	LOW (LogKOW = 0.3534)

Mobility in soil

Ingredient	Mobility
dipropylene glycol monomethyl ether	LOW (KOC = 10)
propylene glycol	HIGH (KOC = 1)
dipropylene glycol dimethyl ether	LOW (KOC = 10)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
 Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

COMBUSTIBLE LIQUID	COMBUSTIBLE LIQUID, regulated for storage purposes only
Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
dipropylene glycol monomethyl ether	Not Available
propylene glycol	Not Available
dipropylene glycol dimethyl ether	Not Available
alcohols C12-14 ethoxylated propoxylated	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type	
dipropylene glycol monomethyl ether	Not Available	
propylene glycol	Not Available	
dipropylene glycol dimethyl ether	Not Available	

Page **14** of **15**

ResinAway 3764/1

Issue Date: **07/03/2020**Print Date: **17/05/2021**

Product name	Ship Type
alcohols C12-14 ethoxylated propoxylated	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

dipropylene glycol monomethyl ether is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

propylene glycol is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Australian Inventory of Industrial Chemicals (AIIC)

dipropylene glycol dimethyl ether is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

alcohols C12-14 ethoxylated propoxylated is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (dipropylene glycol monomethyl ether; propylene glycol; dipropylene glycol dimethyl ether; alcohols C12-14 ethoxylated propoxylated)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (dipropylene glycol dimethyl ether; alcohols C12-14 ethoxylated propoxylated)
Japan - ENCS	No (alcohols C12-14 ethoxylated propoxylated)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (dipropylene glycol dimethyl ether; alcohols C12-14 ethoxylated propoxylated)
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	07/03/2020
Initial Date	24/01/2020

SDS Version Summary

Version	Date of Update	Sections Updated
3.1.1.1	13/02/2020	Acute Health (inhaled), Acute Health (skin), Advice to Doctor, Chronic Health, Classification, Fire Fighter (extinguishing media), Ingredients, Storage (storage incompatibility)
4.1.1.1	07/03/2020	Classification change due to full database hazard calculation/update.
4.1.2.1	26/04/2021	Regulation Change
4.1.3.1	03/05/2021	Regulation Change
4.1.4.1	06/05/2021	Regulation Change
4.1.5.1	10/05/2021	Regulation Change

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC—TWA: Permissible Concentration-Time Weighted Average PC—STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

Chemwatch: 5388-21 Page **15** of **15** Issue Date: 07/03/2020 Version No: 4.1.5.1 Print Date: 17/05/2021

ResinAway 3764/1

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.